SOUP List (Software of Unknown Provenance)
The 62304 requires you to document your SOUP, which is short for Software of Unknown Provenance. In human language, those are the third-party libraries you’re using in your code, typically in your requirements.txt or Gemfile.
	Classes
	IEC 62304:2006 Section
	Document Section

	B, C
	5.3.3 (Functional and Performance Requirements)
	2

	B, C
	5.3.4 (Hardware and Software Requirements)
	2

	B, C
	7.1.2 (Hazardous Situations)
	2

	B, C
	7.1.3 (SOUP Anomaly Lists)
	2

	A, B, C
	8.1.2 (Identify SOUP)
	2


1 Risk Level Definitions
The 62304 requires you to assess risks associated with SOUP. The simplest way to do this is to classify each SOUP as a certain risk level. Unless you’re developing software which shoots radiation at patients, it’s likely that your SOUP risk levels remain “low” or “medium”.
	Risk Level
	Definition

	Low
	Malfunction in SOUP can’t lead to patient harm.

	Medium
	Malfunction in SOUP can lead to reversible patient harm.

	High
	Malfunction in SOUP can lead to irreversible patient harm.


2 SOUP List
This is the actual SOUP list. For each third-party library you use, add an entry in the table below. The idea is to only have one “global” SOUP list for your medical device even though the code may actually live in multiple repositories. That’s what the “software system” column is for; you could also mention your (git) repository there.
When specifying requirements, the 62304 requires you to mention functional, performance, hard- and software requirements. However, you may not have to re-state certain requirements if they apply to all SOUP, e.g., “runs on Linux”. So prefer to keep the requirements simple, in a way in which you would communicate them to colleagues on your development team when answering the question “why did we import this library?”.
As with all templates: It’s more about the content (i.e., the columns you see below) than the tool (filling this out in Google sheets / markdown / wherever). Nobody says that you have to maintain this as a Google sheet. If you can find a way to integrate this in your workflow in a better way, e.g., in a markdown file in your git repository, go for it! Just keep in mind that you need to be able to export it to send it to auditors.
	ID
	Software System
	Package Name
	Programming Language
	Version
	Website
	Last verified at
	Risk Level
	Requirements
	Verification Reasoning

	1
	Mobile App
	react-native
	JavaScript
	0.61
	Link
	23.10.2020
	Low
	* Runs JS on Android / iOS
	Commonly used, maintained by a large organisation, sufficient test coverage



Template Copyright openregulatory.com. See template license.
Please don’t remove this notice even if you’ve modified contents of this template.
